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1 Introduction

In marine biogeosciences, it is a common problem to determine nutrient consumption
and production rates along vertical sections through the water column or in the
underlying sea-floor sediments. On the basis of these consumption and production
rates, it is for example possible to identify zones with high biological activity along
the considered vertical transects.

The drawback with the consumption and production rates is that it requires a lot
of work to determine these rates. Therefore, it is common practise to estimate these
nutrient consumption and production rates from measured vertical concentration
profiles of the respective nutrients like Oy or SO7~, which are more easily to access.

In order to determine consumption and production rates under steady state con-
ditions, the following equation can be considered, which relates the nutrient concen-
tration with processes of sedimentation, pore water advection, molecular diffusion,
bioturbation, irrigation and the valid consumption and production rates (for more
details concerning this equation, see e.g. Boudreau [1997] or Berg et al. [1998]):

dowe) 4 (¢ D+ DB%) +9p(C —Cw) = R (1)

Here, C' denotes the nutrient concentration and R the valid consumption and produc-
tion rate. Furthermore, ¢ denotes the sediment porosity, w the sedimentation rate
combined with pore water advection, D the molecular diffusion coefficient (corrected
for sediment properties), Dp denotes the bioturbation coefficient, 3 the coefficient
of irrigation and Cy the nutrient concentration in the water column right above the
sediment.

These coefficient function can be constant over the considered depth interval or
could be depth-dependent. In addition, this equation is also valid in the water column,
if sediment porosity is set to ¢ = 1 and the processes of bioturbation and irrigation
are neglected.

The REC_v3 (Rates Estimation from nutrient Concentration profiles) calculates
consumption and production rates on the basis of nutrient concentrations. It solves an
inverse linear system via a technique called Tikhonov regularization, and is delivered
in five subfolders:

e manual: This folder contains this manual.

e matlab code with GUI: This folder contains the MATLAB program ver-
sion which can be controlled via a graphical user interface. Similarly, MATLAB
must have been installed.

e windows executeable: This folder contains the windows executeable ver-
sion, which can be executed without MATLAB, if the MGL toolbox has been
installed. This windows executeable has been build from the MATLAB code
via the MATLAB compiler.

e MGL: This folder contains a MATLAB related toolbox, which must be installed
first, if the windows executable is to be used.



2 The numerical algorithm

From equation (1), an inverse linear system is build via discretization of the con-
tinuous derivatives on a computational grid. This inverse system is solved with a
technique called Tikhonov reqularization, which can find relatively stable solutions in
the presence of measurement errors. The different steps of the algorithm are depicted
in Fig. 10:

In the first step, the nutrient concentration data and the coefficient functions (e.g.
porosity, the diffusion coefficients etc.) must be provided to the numerical algorithm
via text files.

In second step, the possibly irregular distributed nutrient concentration data and
the coefficient functions are interpolated to a regular spaced computational grid.
With these regularly spaced data, the inverse linear system is build in the third step.

In the fourth step, this inverse linear system is solved via Tikhonov regulariza-
tion. For this technique, two stabilizing parameters must be defined, which control
the smoothness of the final rate profile. The first parameter \ (called the 'smoothing’
parameter) must be set by the user, while the second parameter a (Tikhonov param-
eter) is determined via an numerical procedure. For this procedure, the user must
provide the boundaries of the interval, in which the optimal « is searched for. During
this finding process of the optimal «, local minima of the so-called ratio-criterion
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Figure 1: Sketch over the numerical procedure.
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Figure 2: Example of the ratio criterion T'(«) for finding an ’optimal’ Tikhonov
parameter o.

are searched for. In Fig. 11 an example of this ratio-criterion function can be seen.
Here, the circle marks the optimal a, which will be used finally for the Tikhonov
regularization. On this figure, the optimal o parameter is searched for in the interval
108 to 10*2.

The value of the smoothing parameter A influences the smoothness of the obtained
rate function. If this parameter is very large, the rate function will be very smooth
with nearly no extreme maxima and minima, or will even be a straight line.

In the last step, the calculated rate function is plotted on the screen and the
results are printed to an output file.

If the obtained rate profile is not smooth enough or to smooth, the user could
change the smoothing parameter \ accordingly, and could start the model, again.



3 How to use the model

3.1 Installing the numerical model

Please extract the zip-archive to a working folder of your choice. If the MATLAB
code is to be used, the model is ready to use, if MATLAB is installed on the computer.

If the windows executable is to be used, the MGL toolbox must be installed,
first. To install the MGL toolbox, change to the MGL folder and execute the mglin-
staller.eze file, which starts the installation process. During the process you will be
ask to provide the name of a folder where to install the MGL toolbox. Please press
only the Enter button, to install the toolbox in the current folder. If the installation
is successful, the windows executable is ready to use.

3.2 Preparing the setup folder and the input files

The procedure to model a new nutrient concentration profile is similar to for all model
versions. Change to the folder with the model version to use (MATLAB, MATLAB
with GUI, or the windows executable) and create a new folder. In this example, the
name of the setup folder is marked by the * symbol.

After creating the setup folder, simple ascii files must be created containing the
profiles of the nutrient concentration and the coefficient functions. These files must
be located in the setup folder and must start with the name of the setup folder. In
total, six different files must be created each consisting out of two columns. The first
column contains the depth levels and the second column the respective property. In
the following table, the necessary files with their file endings are listed.

property file end
nutrient concentration C' * Cutxt
porosity ¢ *  phi.txt

vertical advection velocity w * _omega.txt

effective molecular diffusion coefficient D * D.txt
bioturabtion coefficient Dpg * Db.txt
irrigation coefficient (3 * beta.txt

In this table, the * symbol stands for the setup name.

The depth interval of the setup is determined by the depth interval set by the
concentration input file via the first and the last depth level. Therefore, the first and
the last depth level in the other five input files must be equal. If this is not the case,
an error message will appear during the execution of the program.

While the nutrient concentration is usually depth dependent, the coefficient func-
tions might be constant over the considered depth interval. An easy way to prescribe
a constant coefficient function is to provide the constant value at the top and at the
bottom depth level. If, for example, a constant porosity of 0.75 is assumed over a
depth interval from 0 em to 50 cm, the * phi.txt file should look like:

0.0 0.75
50.0  0.75

At depth levels not given in the input file, the values of the coefficient functions are
determined by linear interpolation. If, for example, a profile of the effective diffusion
coefficient is assumed, which is linear decreasing in the first 20 cm of the sediment
from a value of 3.0 - 107° ¢m?/s to 1.0 - 107° cm? /s, and which is constant over the
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next 50 cm, the * D.txt file should look like:

0.0  3.0e-5
20.0 1.0e-5
70.0 1.0e-5

During the execution of the program, the six input profiles are depicted in two
figures, each consisting out of three subfigures. With the help of these figures, the
user can verify, whether the input functions used for the computational process are
correct.

3.3 Starting the model
3.3.1 Running the MATLAB code with the graphical user interface

To use the MATLAB code with the graphical user interface, please start MAT-
LAB on your computer and change the current MATLAB working directory to
the folder 'matlab code with GUI’. The model is started by executing the m-file
REC_ v3 with GULm.

3.3.2 Running the windows executable

To use the windows executable, the MGL toolbox must have been installed, which
is described in section 3.1. If that is the case, please change to the folder 'win-
dows__executeable’. The programm is started by double-clicking on the batch-file
run_ REC v3.bat.



3.4 Providing the input parameters to the model
3.4.1 Using the graphical user interface

If the windows executeable or the MATLAB code with graphical user interface is to
be used, the necessary input parameters are provided via a graphical window, which
is depicted in Fig. 3. Via this window, the user must provide the setup name, the size
of the computational grid, the water nutrient concentration in the case of irrigation,
the boundary conditions for the nutrient concentration, and the parameters used for
the Tikhonov regularization. Now, these input parameters will be described in more
detail.

setup name Here, the name of the setup folder must be provided, which has been
explained in section 3.2.

N ¢ Number of used control levels, which is equal to the number of the compu-
tational grid points. This number should be higher than the number of the
nutrient concentration data values.

C_water If irrigation is considered, the nutrient concentration in the water column
above the sediment surface must be provided. The unit should be uM.

boundary conditions Here, the user must provide information about the nutrient
boundary conditions at the top and bottom of the considered depth interval.
The ’type’ switch can be 1 or 2. In the case of Dirichlet boundary conditions
(the nutrient concentration value is fixed), type’ must be set to 1. In case of

B[S

Setupname | test_case_?_data_delta Boundary conditions
type walue
N_c | 107
i3 | T
C_wiater | 25e3 bottom | 1 [ Ea3

Tikhanow parameter

smoothing parameter lambda 1

log_10(alpha_min) a
log_10(&lpha_max) 15
M_alpha 3

Figure 3: The graphical user interface to provide the necessary input parameters.
Here, all the parameters correspond to the provided example test case.



von Neumann boundary conditions (the derivative of the nutrient concentra-
tion is given) 'type’ must be set to 2. Nutrient concentration units must be
1M, whereas derivatives are given in puM/cm. For ’value’, the corresponding
numerical value must be given.

Tikhonov parameter Here, the necessary parameters for the Tikhonov regulariza-
tion are provided. The user must provide the value of the smoothing parameter
A, and the range of the o parameter, where the boundaries are given as ex-
ponents to the basis of ten. In other words, the optimal « is searched for in
the interval a,,;, = 10P™» and e, = 10Pme=. Finally, N alpha denotes the
number of the tested optimal « in the given interval. If this number is only
two, only the left and right boundary value is tested. If this number is large
(around 500) the given a-interval is sampled in more detail.

Furthermore, it might be necessary to change the boundary values for the «
parameter in several model runs, to find an optimal local minimum of the ratio-
criterion function.

3.5 The model output data

Estimate rates - button Having provided the input data and pressing the button
‘estimate cons./produc. rates’ the consumption and production rates are calculated
from the input data. Furthermore, three output files are generated, which are located
in the setup folder and which are named:

* output.txt This file contains the estimated profile of the consumption and pro-
duction rates and the fitted nutrient concentration.

* _output.jpg The figure of the estimated results.

* output fluxes.txt This file contains the diffusive and advective fluxes across
the interfaces of the considered depth interval. These fluxes are calculated from
the fitted concentration profile via:

e diffusive flux : —¢(D + Dp)%E
e advective flux : ¢pwC

e total flux : sum over diffusive and advective flux

Integrate rates - button After the consumption and production rates have been
calculated, the user can integrate the rate profile over a selected depth interval. To
do this, the button ’integrate rates over depth interval’ must be pressed.

Then, the figure 4 opens again, and the user must select via the computer mouse,
the two depth levels over the rate profile. After the two depth levels have been
selected, the rates are integrated over that interval via Simpson’s rule. The result of
this integration is written to the file * output rate integration.txt’.



4 An example test case

The test case considers a consumption rate with a larger consumption peak near the
surface of the sediment and a smaller consumption peak in a deeper sediment layer
with the following rate function:

R(z) = —4.0- 10—4@ o~ (z=10cm)?/10em
cmes

—20- 10_4nmol o~ (2=40cm)? /10cm
' cm3s

Sedimentation, bioturbation and bioirrigation are neglected (w = 0, D = 0 and
B = 0), and the other coefficient functions are constant with ¢ = 0.75, D = 0.685 -
10~°ecm?2s~!. The nutrient concentration boundary conditions at the top and bottom
are Cy,p = 2.5 - 10* uM and Chosrom = 0.5 - 10* uM. The profile of the consumption
rate R and the resulting concentration profile C' is depicted in Fig. 4.

From this rate function and the coefficient functions, the resulting nutrient con-
centration is calculated by solving the differential equation (1) numerically. To the
obtained nutrient concentration random noise was added to simulate some measure-
ment errors. The prepared input files are stored in the test case folder with the name
'test _case 2 data_delta’.

The used input parameters for the model run are shown in Fig. 3. If the model
is started, the input profiles are depicted in the first to appearing figures. For the
considered test case, these figures are shown in Fig. 5 and 6.

C [uM] R [nmol / (cm?® s)]
0 0 ‘
5 L
10t
15}
20
5 o5}
N
30}
35} 35} d
40} 40} 1
45¢ 45} i
50 50 ‘
0 ~4 -2 0

Figure 4: The profile of the consumption rate R and the resulting concentration
profile C' for the considered test case.



Furthermore, Fig. 7 shows the obtained ratio criterion function, where the black
circle denotes the optimal « taken for the Tikhonov regularization. Finally, using a
smoothing parameter A = 1, the resulting rate function is depicted in Fig. 8.

If a larger smoothing parameter A = 100 is used, one gets the result shown in in
Fig. 9. In that case, the obtained rate function is much smoother, with minor peaks.
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Figure 5: The first figure after starting the model, which depicts the input profiles of
the nutrient concentration, the porosity and the sedimentation rate. In this test case,
porosity and sedimentation rate are constant over the considered depth interval.
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Figure 6: The second figure after starting the model, which depicts the input profiles
of the irrigation coefficient, the molecular diffusion coefficient, and bioturbation co-
efficient. In this test case, irrigation and bioturbation are neglected, and molecular
diffusion is set constant over the considered depth interval.
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Figure 7: The obtained ratio criterion function for the considered test case. The
black circle marks the optimal «.
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Figure 8: Result obtained with the given input parameters shown in Fig. 3 using a
smoothing parameter A = 1.
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Figure 9: Result obtained with the given input parameters shown in Fig. 3 using a
smoothing parameter A = 100.
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A Numerical Technique

Here, the numerical procedure is to be explained in more detail. This is a
very preliminary version of the technical documentation - so be careful !!

On overview of the numerical procedure is depicted in the flow chart in Fig. 10.
Although it might look complicated at the first glance, it contains the necessary steps
and relations between all the different quantities and additional profiles, which are
calculated during the procedure. This flow chart can be used as a map to find the
right path in the ’jungle’ of the proposed method.

Before, each step of this flow chart is explained in more detail, a short overview:
As mentioned in section 77, the basic step of the procedure is building the stabilizing
matrix H, which is a combination of the original finite difference approximation of
the basic differential equation (1) and some additional stabilizing terms, by means of
a technique called Tikhonov regularization (see e.g. Engl et al. [2000], Bjork [1996],
or Hofmann [1999]). In order to construct this matrix H, two free parameters have to
be provided, of which the Tikhonov parameter o can be estimated via an objective
criterion. This parameter selection process is denoted by the central gray-shaded
box in the middle of the flow chart. Furthermore, the matrix H is not directly
applied to the concentration data. Instead, first, the concentration data have to be
interpolated to a regular computational grid, and after that, a mean concentration
profile is subtracted. The matrix H is applied to the residual concentration data

(Cr).

A.1 Interpolation onto a Computational Grid

A very important step of the proposed numerical procedure is to provide the solute
concentration data and all the coefficient functions on a discrete equidistant com-
putational grid z;, i« = 1,..., N, where the first value, z; is the nearest point to the
sediment surface and the last value, zy, denotes the deepest depth value. The con-
stant distance between the grid points is denoted by Az := 2,1 — 2; = const. for
i =1,..,N — 1. In the following, each property f(z) (like solute concentrations,
porosity, consumption rates, etc.) provided on this computational grid is denoted in
vector notation by f = (f(21), ..., f(2n))-

As a side remark, it is not necessary to work with a equidistant computational grid.
Berg et al. [1998] built their numerical procedure on finite difference approximations
applied to the irregularly sampled data points. However, due to reasons of accuracy of
the finite difference approximations, we decided to use an equidistant computational
grid for the finite difference approximation of the basic differential equation. The
disadvantage of this decision is that the data also has to be provided on that grid,
what is done by interpolation techniques. However, the reader must have in mind,
that this interpolation modifies the data in some respect.

In the case of the coefficient functions ¢, w, D, Dpg, and [, it is sufficient to use a
linear interpolation technique, which draws straight lines in between the data points.
In the case of the concentration input data, linear interpolation is not sufficient.
This can be explained by looking at the differential equation (1). It is an ordinary
differential equation of second order, and using piecewise linear approximations for the
solute concentration will lead to zero rate profiles only by means of the interpolation
technique.

To circumvent these problems, a cubic spline interpolation technique is used to
interpolate the given concentration data onto the computational grid. By this tech-
nique, the concentration data are approximated by a series of cubic polynomials,

14
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Figure 10: Flow chart of the proposed numerical procedure. The gray shaded prop-
erties at the top of this flow chart denote the input data the user has to provide. The
output data of the procedure are denoted by the gray shaded boxes at the bottom of
this chart. The large gray shaded area in the middle of the flow chart contains the
necessary steps of estimating an optimal Tikhonov parameter «.

whose second derivatives by default are not zero. However, one has to take care
about the end conditions of these cubic spline functions. It is very important not
to use so called natural end conditions setting the second derivatives of the spline
functions at the end points to zero. As with linear interpolation, this will by default
result in zero consumption or production rates at the boundaries of the considered
depth interval. Instead, so called not-a-knot end conditions should be used, which
means that the cubic interpolating spline is constructed in such a way that the third
derivative is continuous at the computational grid points 2z and zy_;. With such
end conditions, the second derivative of the spline functions at the boundaries of
the depth interval is not restricted to zero by default; and therefore, the resulting
consumption and production rates are also not zero.

As a further side remark, if the data suffer from larger gaps between adjacent data
points, the cubic splines might cause additional wiggles in the data gaps, which might
lead to large and probably wrong estimated rate values in those data gaps. However,
we have also tested spline interpolation with quadratic polynomials, which reduces
the risk of additional wiggles. On the other hand, the obtained rate profiles might not
be stead any more between adjacent data intervals, what is one of the major tasks of
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the proposed procedure. This finally leads to to decision of using cubic splines, which
produce steady rate profiles, which the risk of additional rate peaks in the cases of
very irregular sampled data points.

A.2 Construction of the matrices F and A

Now, the used finite-difference approximation of the basic differential equation (1) is
provided. At the start, the new quantities @ := ¢w, D := ¢(D + Dp), and [ := ¢
are defined, and the derivatives in Eq. (1) are expanded, which leads to:

d iC -2
{“+40+

_dD
w__

d dz

The coefficient functions within the square brackets are combined to the following
new definitions:
da ~
rz) = () + B (3)
dD
= w(z) — — 4
s() = o) - S (2) (1

With these definitions, Eq. (2) can be written as:

ac d*C ~
rC + S DW BCw = R (5)
This linear differential Eq. (5) will now be discretized on the computational grid
by using finite difference approximations. The first derivatives in the functions r(z)
and s(z) can be obtained by standard finite difference formulas on the computational
grid. (See e.g. Boudreau [1997] for proper approximation formulas.)
Due to reasons of stability and accuracy, a blended approximation proposed in
Boudreau [1997], which goes back to Fiadeiro and Veronis [1977], is used for the first
derivative of the concentration C:

E (1 — O-i)CiJrl + 20202 — (1 + 0'2‘)02;1
dz |, 2Az
with o; .= coth <SZAZ> — 2D

21)Z SiAz

The second derivative of the concentration function is approximated by the central-

difference formula:
d*C _Ci1 =20+ Ciy

dz? |, (Az)?

Inserting these approximations into Eq. (5) and defining the quantities:

S D;

= (] P
i (140547 (A2)?
S$;0; ZDZ
i = nit Lt ALy
s; D,
o (g P
cei = (L=o)gq7 (A2)?

the following relations are obtained at the grid points i=3,...,N-2:
aalCl 1+ bb C + CCZ i+l — @CW = R (6)
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In the case of the grid points 1,2, N-1, and N the boundary conditions must be
taken into account. For Dirichlet boundary conditions, the concentrations are fixed at
the boundary points, whereas in case of von Neumann boundary conditions, the first
derivative of the concentration profile is prescribed. The boundary conditions could
also be mixed, with e.g. a fixed concentration at the top and a fixed first derivative
of the concentration at the bottom boundary point.

To implement von Neumann boundary conditions, the following assymetric finite-
difference expressions for the first derivative are used, where my,, and mpetton, denote
the first derivatives at the top and bottom boundary point:

30, +4Cs — Oy
Mttop 2Az
3CN — 40]\/71 + CN,Q
Mpottom = IA~

Using these expressions for von Neumann boundary conditions or taking the pre-
scribed concentration Cl,, in case of Dirichlet boundary conditions, the following
equations are obtained for the second grid point i = 2:

Dirichlet: bbyCy + ccoCs + [aasClop — BQCW] = Ry

4 1
von Neumann: {bbg + gaag} Csy + {ccz — §OJQQ:| Cs (7)
2 ~
+ |:_§AZ aag Mtop — BQCW:| = RQ

Similarly, one obtains for grid point i = N-1:

Dirichlet: aaN_lC'N_g + bbN_1CN_1

+[CCN—IObottom - BN—IOW] = Rn_1

1
von Neumann: [aaN_l — §ch_1} Cn_2 (8)

4
+ |:bbN1 + gCCN1:| CN,1

2 .
+ {gAZ CCN —1Mpottom — 5N1CW] = Ry

These N-2 equations | one equation from (7), N-4 equations from (6) and one
equation from (8)] can be written in a more compact form:

FC, +d, =R, (9)

with F € RW=2x(N=2) denoting the finite-difference matrix of the corresponding
differential Eq. (5). C, € RW~=2 denotes the concentration vector on the interval
[29,2nv_1], and d, € RWN=2) ig build from irrigation and the concentration boundary
conditions. (The subscript r indicates that a vector is defined on the reduced interval
(29, zx—1).) Finally, R, € R™¥=2) denotes the rate vector on the interval [z, zx_1]:

02 RQ
CT = ) RT’ =
CN—l RN—l
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If, for example, the concentration is prescribed at the top boundary and the

derivative of the concentration at the bottom boundary, the vector d and the matrix
F look like:

- 52 CW~+ aas C’top

—B2Cw
d, = :
. —Bn—2Cw
—Bn-1Cw + %Az CCN—1TMottom
and
F =
bbz CCo 0 0
aaz bbs  cc3 0
aan_o bbn_o CCN_2
0o --- 0 (aaN_l — %CCN_l) (bbN_l + %CCN_1>

Defining a new modified concentration vector:

A

C,:=C,+Fd, (10)

equation (9) can be written as:
FC, =R, (11)

Finally, defining the matrix A := F~', Eq. (11) can be transformed to an inverse
linear system for the consumption and production rates and the modified concentra-
tion on the interval [z9, zy_1]:

ART‘ = Cr (12>

A.3 Estimation of the Mean Quantities

Instead of applying the Tikhonov regularization on the inverse system (12), this
system is transformed into a system for the deviation profiles from specific mean
quantities. In this section, the derivation of the mean quantities and their residuals
is explained.

To estimate a constant mean net consumption and production rate from the mea-
sured concentration profiles and the coefficient functions two different approaches are
possible. The first is based on the vertical integration of Eq. (1) over the considered
depth interval. And the second approach is based on solving the linear system (12)
with the a priori assumption of a constant rate data vector.

In the first approach, the constant mean rate is defined by:

Zmazx

Zmin

where L := 2,00 — Zmin denotes the length of the considered depth interval.
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To obtain an estimate for this mean rate R, the governing differential Eq. (1) is
integrated over the considered depth interval:

Zmax

LR = /qﬁﬁ(C—CW)dz

+ [qwa —o(D+ DB)%] (14)
— [(wa — (D + DB)%l

The terms in square brackets on the right hand side denote the total element fluxes
across the top and the bottom boundary of the considered interval, and the integral
calculates the cumulative influence of irrigation. Although looking more difficult, the
numerical estimation of this irrigation integral from measured concentration profiles
is more robust and will cause only small damage to the obtained solution of the mean
rate. However, the estimation of the flux terms is more problematic, because they
include derivatives, whose estimation can suffer from large errors, if the measured
data are very noisy.

To reduce the problems of estimating derivatives at the top and bottom of the
respective depth interval, a second method can be used, which estimates the constant
mean consumption and production rate from the linear system (12) on the basis of
the following definition:

This mean rate is defined as that constant rate R., which fits best to the modified
measured concentration data in a least-squares sense.

With this definition, the rate vector R, can be approximated by

1
RT ~ Rc = RCET‘
1
with E, := (1,...,1)7 € RW=2_and the linear system (12) reduces to
RM = C,
where M := AE, € RW-2 With this equation, the least-squares solution for the
constant rate R, is given by:
1 e
Ro=————M'C, = R,=|[ : 15

These two proposed constant mean rates R and R. need not be equal. And
although the first definition seems to be more appropriate, the second definition R,
is used for the proposed numerical procedure due to its likely more robust estimation
process.

Based on these mean rate R a mean concentration data vector can be derived by:

C, = AR, (16)
And with this mean concentration profile, the corresponding residual profile can be
obtained: _ X ~
C.=C,-C, (17)
Similarly, a residual rate profile can be defined, although the rate profile R, is
not known:

RT - Rr - Rr (18)
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A.4 Tikhonov Regularization and the Construction of the Ma-
trix H

With the definitions of the residual profiles in Eq. (17) and (18), a linear inverse
system can be constructed for these residual quantities on the basis of the linear
system (12):

ARr = ér (19)

To remind, within this linear system, the system matrix A and the modified
residual concentration profile C, are known. However, R is the unknown rate profile,
which has to be estimated from this system of linear equations.

This system (19) could instantly be solved for the unknown rate profile R, by
R, = A7'C,. But as F = A™! the resulting rate profile might also be completely
wrong, as the matrix F is very ill-conditioned. Although there have been a lot of
mathematical calculations up to this point, we have not done anything to deal with
the ill-conditionedness of this matrix F = AL

Here, Tikhonov regularization (see e.g. Engl et al. [2000], Bjork [1996], Hofmann
[1999]) comes into play. Instead of searching the rate values such that the measured
concentration data are matched in the best way (which would be the solution R, =
Aflér), a compromise is searched for. This compromise tries to fit the concentration
data on the one hand, but seeks smooth and realistic rate profiles on the other hand.
In mathematical terms, this compromise can be expressed by finding that rate profile
R, that minimizes the following cost function:

M,(R,) := [|AR, — C;|]? + a« Q(R,) = min ! (20)

Here, || - || denotes the Euclidean norm of a vector, and « is a free parameter. The
first term on the right side, forces the solution to match the concentration data.
However, the second term, aQ(f{r) tries to push the solution towards rate profiles
with a 'good’ behavior. Here, the Tikhonov parameter o can be used to give this
term more weight.

This additional cost term aQ(f{r) can be constructed in such a way that large
maxima and minima, or strong oscillations of the obtained solution R lead to high

values of this cost function:
Q(Ry) = [[Re]3 + M IR + MRV

Here, X is a second free parameter > 0, and f{; denotes the first discrete derivative of
the residual rate profile in the interval |29, zy_2], and ]_?{;’ the second discrete derivative
in the interval [z3, zy_2].

The characteristics of the obtained residual rate profile can be influenced by choos-
ing the appropriate value of this weight parameter A\. If A = 0, only large maxima
and minima of the residual rate are punished. Yet, the obtained profile could still
be quite noisy with a lot of fluctuations. If a smooth solution is desired, the values
of X should also be high. Therefore, the parameter \ can be considered as a kind of
smoothing parameter.

Now it becomes obvious, why a constant mean net consumption and production
rate has been introduced for the considered depth interval. If a > 0 is very large,
strong deviations from the mean rate are punished. This means that a very large «
forces deviations from the mean rate to be zero, which finally leads to the constant
mean rate profile. If this mean rate had not been introduced and the total rate profile
had to be estimated instead, a very large o would result in a zero total rate profile.
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After defining this cost function, it is still necessary to find a solution R, that
minimizes the cost function. To do this, it is helpful to write the additional term in
a different way replacing the Euclidean norm with the scalar product < -,- >:

QR,) = HfifH%fAHflLH% + Ajlfii!H%~ o
= <Ry, Ry > +A<LiR LiRy > +A < LoR;, LR, >
= <R, R, >4\ <Li"LiR,, R, > +) < L,"LyR,, R, >
= <BR, R, > (21)
with B:=Id+ AL;"L; + ALy Ly

Here, the new matrix B € RW=2x(V-2) ig defined with the identity matrix Id €
RWV=2x(N=2) "and with the matrices L; € RWV=3x(N=2) and L, € RW-49x(V=2) for
the determination of the first and second derivative of the discrete rate function.
These matrices are given by:

-1 1 0 0 0
0o -1 1 0 0
L, := i : . . . . : ER(N_3)X(N_2)
0 0O -1 1 0
0 O 0 -11
and
1 -2 1 0 O 0
. o 1 -2 1 0 0
Lyi= —— L c RIN-0)x(N-2)

_2 (AZ)Q . . . . .
0 1 -2 1 0

o -~ 0 0 1 =21
Then from Hofmann [1999] and with relation (21), the minimizing residual profile
can be obtained by:

R¢ = (A"A +aB)'ATC, (22)
Or, in a more compact form: ~ B
Ry = HC, (23)
with
H:=(A"A+aB)'A" (24)

where AT denotes the transposed matrix of the matrix A. The notation f{f denotes,
that the rate profile is estimated via Tikhonov regularization and still depends on
the regularization (or Tikhonov) parameter a.

A.5 Estimating the Optimal Tikhonov Parameter

The solution, obtained from Eq. (22) still depends on the choice of the smoothing
parameter A and the Tikhonov parameter a. Therefore, these parameters should be
chosen in a proper way. If the parameters o and A are too high, the obtained rate
function is smooth without any very large maxima and minima, which denotes a
stable behavior. On the other hand, due to the forced smoothness, the reconstructed
rates may differ from the real rates in some intervals, and also the reconstructed
concentration data might not be fitted correctly. If the free parameters a and \
are too small, the fitted concentration profile will be closer to the measured data,
but the reconstructed rate function might show unrealistically high maxima and

21



-0.91F

-0.92f

-0.937

T(a)

-0.94r

-0.95f

-0.96

-0.97r

-0.98 : : ©

Figure 11: Example of the ratio criterion T'(«) defined in Eq. (25) for finding an
‘optimal” Tikhonov parameter o.

minima. Therefore, the parameters should be chosen properly on the basis of a
reasonable criterion. Here, at least one criterion is presented for estimating the
Tikhonov parameter o.

In Engl et al. [2000] and Hofmann [1999], several selection criteria for estimating
an optimal a parameter (for a fixed A parameter) are presented. Among these
criteria are the famous L-curve criterion of P.C. Hansen and the General Cross-
Validation criterion (Wahba [1990]). After some tests with these different criteria it
was found that the so called ratio criterion proposed by A.N. Tikhonov is a good
candidate. With this parameter selection criterion, the optimal « is chosen such that
the following function 7'(«) is minimized:

dR~ 20 &
IIA<a ) (- &)

T(a) ‘@ n (25)
(0% = — = = =mn !
AL

with C* = AR®, and R® denotes the solution from Eq. (22) for given a and A. In
addition, the derivative term d;;; is given by:

dR®

o = —(ATA + aB)™! (BRY)

Applying this criterion to real data, one often finds that the function 7T'(«) has
several local minima in a given parameter range of a. In that case, one of the larger
a values is chosen to obtain a more robust estimate of the rate function. In Fig. 11, a
possible graph of this T'(«) function is illustrated. If the solution of the rate function
is not smooth enough, a larger A value could be chosen, with which a new optimal
a value can be determined by criterion (25). So, the ’optimal’ parameters A and «
can be chosen through an iterative procedure.

A.6 Obtaining the final solutions

Once the optimal parameters have be selected and an estimate of the residual rate
profile R has been obtained, the total rate profile and the total fitted concentration
profile can be calculated.
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At first, to obtain the total rate in reduced depth interval [z, ..., zy_1] the esti-
mated constant mean rate is added to the residual rate:

R® =R, + R® (26)

In order to extend the estimated rate profile to the boundary points, it is assumed,
that the first derivative of the rate profile is zero close to the boundaries of the total
depth interval. Therefore, the total rate on the total depth interval [z, ..., zn] is
obtained by:

R = (Re(2), Ry Re(on)) (27)

To this estimated rate function R, in the considered depth interval, there is a
corresponding solute concentration profile C* given by the solution of the discrete
form of Eq. (1). As explained in the appendix, this solution can be obtained via Eq.
(28) and the imposed boundary conditions. When presenting the results of the REC
numerical procedure in later sections of this manuscript, these profiles C* will be the
smooth curves through the measured concentration data.

Finally, to obtain the corresponding total concentration profile from the estimated
total rate profile R (given in the interval |29, ..., zx_1]), based on equations (10) and
(12), the following relation can be obtained:

Cff = A(R? - dr) (28>

Here, d, is build from the boundary conditions as explained before. Furthermore,
in order to also get the values at the boundary points, the prescribed boundary
conditions must be taken into account. With the known concentrations C =
(Cg,...,C% )T, one obtains at the first and last grid point:

1=1:
Dirichlet : CT = Cigp
4 1 2
von Neumann : Cy = -05 — -CF — = Azmy,,
3 3 3
i1=N:
Dirichlet : Cy = Chottom
4 1 2
von Neumann : Cy = 3 = gC}i‘,,z + §AZ Mpottom
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